Extensions 1→N→G→Q→1 with N=C32 and Q=C3×D5

Direct product G=N×Q with N=C32 and Q=C3×D5
dρLabelID
D5×C33135D5xC3^3270,23

Semidirect products G=N:Q with N=C32 and Q=C3×D5
extensionφ:Q→Aut NdρLabelID
C32⋊(C3×D5) = He3⋊D5φ: C3×D5/C5C6 ⊆ Aut C32456+C3^2:(C3xD5)270,14
C322(C3×D5) = D5×He3φ: C3×D5/D5C3 ⊆ Aut C32456C3^2:2(C3xD5)270,6
C323(C3×D5) = C32×D15φ: C3×D5/C15C2 ⊆ Aut C3290C3^2:3(C3xD5)270,25
C324(C3×D5) = C3×C3⋊D15φ: C3×D5/C15C2 ⊆ Aut C3290C3^2:4(C3xD5)270,27

Non-split extensions G=N.Q with N=C32 and Q=C3×D5
extensionφ:Q→Aut NdρLabelID
C32.(C3×D5) = D5×3- 1+2φ: C3×D5/D5C3 ⊆ Aut C32456C3^2.(C3xD5)270,7
C32.2(C3×D5) = C9×D15φ: C3×D5/C15C2 ⊆ Aut C32902C3^2.2(C3xD5)270,13
C32.3(C3×D5) = D5×C3×C9central extension (φ=1)135C3^2.3(C3xD5)270,5

׿
×
𝔽